Constructive Interference in the B $\to \tau \nu$ Amplitude in the MSSM with negative μ

Johannes Heinonen

Enrico Fermi Institute - University of Chicago

Based on arXiv:1109.xxxx (to appear) with C. Wagner (UChicago & Argonne)

August 30, 2011

Fermilab, Batavia

Outline

- Motivation: $B \to \tau \nu$ in SM vs. Experiment
- $B \to \tau \nu$ in the MSSM \to What large and negative μ can can do for us
- Contraints/Consequences for other processes
- Vacuum stability
- Summary

SM vs Experiment

- SM has been verified experimentally to an astounding precission
- However, there are some small(?) deviations
 - $t\bar{t}$ assymetry
 - ...
 - $\mathcal{BR}(B \to \tau \nu)$

SM (UTfit) $(0.81 \pm 0.12) \times 10^{-4}$

Experiment $(1.68 \pm 0.31) \times 10^{-4}$

- \Rightarrow This is $(2-3)\sigma$ discrpeancy
- Is this new physics? If so, what could cause this?

$B \to \tau \nu$: New physics?

• How well is SM value known?

$$\mathcal{BR}(B o au
u)_{SM} = rac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - rac{m_\tau^2}{m_B^2}
ight)^2$$

 \Rightarrow Largest error from f_B and V_{ub} :

$$\mathcal{BR}(B \to \tau \nu)_{SM} \sim (0.73 - 0.83) \times 10^{-4}$$

• Still no agreement with experiment ($\sim 1.6 \times 10^{-4}$).

Working assumption

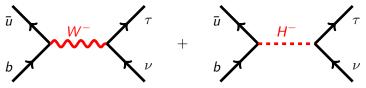
Assume this is due to new physics.

$B \to \tau \nu$ in general Two Higgs Doublet models

• The charged Higgs H^{\pm} can mediate (almost) the same interactions like the W^{\pm}

$$\mathcal{L} \sim \bar{\Psi}_L \gamma^\mu W_\mu \Psi_L + \bar{\Psi}_L \cdot \phi_H \psi_R$$

Leptonic B decays get another contribution (compared to SM)

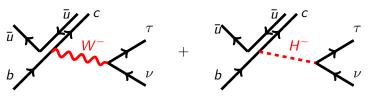


$$rac{\mathcal{BR}(B o au
u)_{2HDM}}{\mathcal{BR}(B o au
u)_{SM}} = \left|1+rac{m_B^2}{m_bm_ au}C_{NP}^ au
ight|^2$$

Looks promising.

$B \rightarrow D \tau \nu$ in the MSSM

ullet A closely related decay is B o D au
u



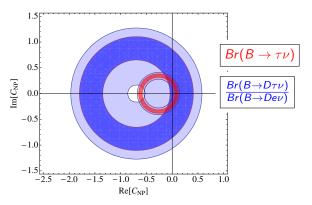
• For better systematics normalize to $\mathcal{BR}(B \to De\nu)$:

$$\frac{\mathcal{BR}(B \to D\tau\nu)}{\mathcal{BR}(B \to De\nu)} = (0.28 \pm 0.02) \times \left[1 + 1.38(3) \text{Re} C_{NP}^{\tau} + 0.88(2) |C_{NP}^{\tau}|^{2}\right]$$

 \Rightarrow How does this compare to $\mathcal{BR}(B \to \tau \nu)$

Fit for C_{NP}

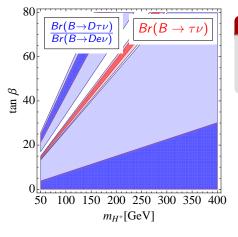
• Allowed region with 1σ and 2σ contours in the complex C_{NP} plane:



 \Rightarrow Best fit for real $C_{NP} \sim +0.1$. From now on. assume that C_{NP} is real.

C_{NP} in the MSSM

• In a specific model we can compute C_{NP}



In the MSSM

$$C_{NP}^{\tau} = -\frac{m_b m_{\tau}}{m_{H^+}^2} \tan^2 \beta$$

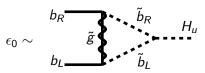
- This is negative!
- ⇒ No overlap in preferred regions.
 - Can we change the sign?

CNP in the MSSM

• C_{NP} gets loop correction from the bottom mass m_b

$$C_{NP}^{\tau} = -\frac{m_b m_{\tau}}{m_{H^+}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}$$

The loop correction is



Measure of $U(1)_{PQ}$ violation in the MSSM

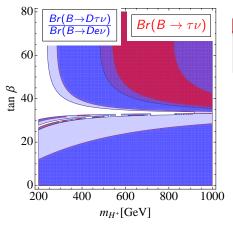
$$\epsilon_0 = rac{2lpha_s}{3\pi} M_3 \mu \, I(m_{ ilde{b}_1}^2, m_{ ilde{b}_2}^2, M_3^2)$$

 \Rightarrow C_{NP} is positive, if μ is negative and $\tan \beta$ large: $1 + \epsilon_0 \tan \beta < 0$.

9 / 21

Fit for C_{NP}

• "Usually" $|\epsilon_0| \lesssim 1-2\%$, but assume we had $\epsilon_0=-3\%$:

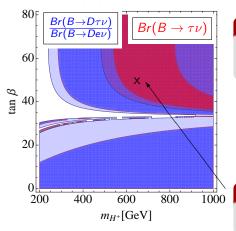


In MSSM $C_{NP}^{\tau} = -\frac{m_b m_{\tau}}{m_{H^+}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}$

- \Rightarrow Large tan β and m_{H^+}
 - Can be $|\epsilon_0|$ this big?
 - How will this manifest in other measurements?

Fit for C_{NP}

• "Usually" $|\epsilon_0| \lesssim 1-2\%$, but assume we had $\epsilon_0=-3\%$:



In MSSM

$$\mathcal{C}_{NP}^{ au} = -rac{m_b m_ au}{m_{H^+}^2} rac{ an^2 eta}{1+\epsilon_0 an eta}$$

- \Rightarrow Large tan β and m_{H^+}
 - Can be $|\epsilon_0|$ this big?
 - How will this manifest in other measurements?

Reference point: $\epsilon_0 = -3\%$

 $\tan \beta = 50, m_{H^+} = 650 \text{ GeV}$

Other observables

- ullet Other observables strongly affected by large, negative μ
 - Penguin decay $b \rightarrow s\gamma$
 - Anomalous magnetic moment of the muon $a_{\mu}=rac{g_{\mu}-2}{2}$
 - Rare decay $B_s o \mu\mu$
- Mass constraints from direct searches.

Penguin decay $b \rightarrow s \gamma$

Experimental value

$$\mathcal{BR}(b \to s\gamma)_{exp} = (355 \pm 24) \times 10^{-6}$$

Receives contributions from charginos and charged Higgses

$$egin{aligned} \left.\mathcal{BR}(b o s\gamma)
ight|_{\chi^\pm} &\propto \mu A_t rac{ aneta}{1+\epsilon aneta}(...) \ \left.\mathcal{BR}(b o s\gamma)
ight|_{H^\pm} &\propto h_t rac{m_b}{v(1+\epsilon aneta)}(...) - \mu M_3 rac{m_b aneta}{v(1+\epsilon aneta)}(...) \end{aligned}$$

 \Rightarrow Need $A_t > 0$ to cancel competing contributions.

Anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$

Experimental value of

$$\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = (23.9 \pm 9.9) \times 10^{-10}$$

- ⇒ Discrepancy between the SM and the experimental value of the myon gyromagnetic moment
 - How do SUSY partners contribute?
 - ightarrow For large tan eta and μ

$$\Delta a_{\mu}^{SUSY} \propto rac{m_{\mu}^2}{M_{SUSY}^2} aneta \, \operatorname{sign}(\mu M_{1,2})$$

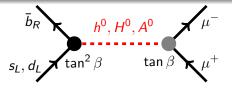
 \Rightarrow Need $M_{1,2} < 0$ to get the needed positive contribution.

[Anomaly mediation: $M_i \propto \alpha_i b_i$, with $b_i = (3, -1, -33/5)$]

Rare decay $B_s \to \mu\mu$

Experimental value

$$\mathcal{BR}(B_s \to \mu^+\mu^-)_{exp} \leq 1.1 \times 10^{-8}$$



• Strongly enhanced for large tan β :

$$\sim 13.2 imes 10^{-8} rac{(16\pi^2 \epsilon_Y)^2}{(1+\epsilon_3 an eta)^2 (1+\epsilon_0 an eta)^2} \left[rac{ an eta}{50}
ight]^6 \left[rac{645 ext{ GeV}}{ extit{M}_A}
ight]^4,$$

Weak contribution:
$$\epsilon_Y \sim \frac{1}{16\pi^2} A_t \mu I(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2)$$
, and $\epsilon_3 = \epsilon_0 + y_t^2 \epsilon_Y$.

⇒ Strongly constraint.

Scanning the parameter space

Let's see if this idea works.

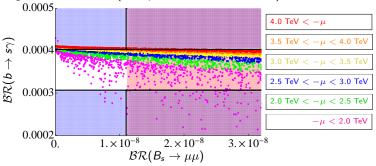
This is how we proceed

- Set $\tan \beta = 50$ and choose random soft masses and trilinear terms $m_L = m_R, A_t = A_b, M_3 \in [0, 5]$ Tev.
- ② Solve $\epsilon_0 = -3\%$ for $|\mu|$.(Demand $|\mu| \le 5$ TeV.) Fix $m_{H^\pm} = 600$ GeV and $M_3 = -2M_2 = -6M_1$.
- Calculate mass spectrum.
 (Discard if masses are tachyonic or excluded, except by new LHC bounds.)
- Calculate the other observables
- Oheck.

Is there a region in parameter space that fulfills all this? Yes!

Results: $B \to \mu\mu$ vs. $b \to s\gamma$

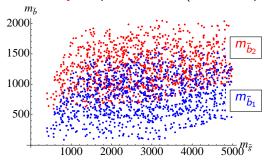
Applying all constraints (except LHC mass bounds)



- These two observables resctict the parameters severely.
- BUT: Still a lot of points survive, favoring μ not too large.

Results: $m_{\tilde{h}}$ vs. M_3

- First two generations can be made heavy easily.
 - → Look at sbottoms only, stops are similar (with less splitting).

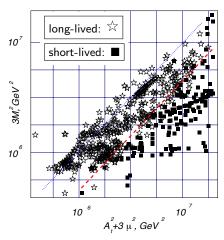


A lot of points survive bounds from direct LHC search

- ullet Gluino is heavy: \sim few TeV.
- ullet Lighter of the sbottoms (and also stops): few 100 GeV to \sim 1.5 TeV.

Vacuum stability: Can be a problem for large $|\mu|$

• Problem: SM-vacuum might not be a global minimum.



 SM-vacuum is a stable, global minimum if

Stability $A^2 + 3|\mu|^2 \lesssim 3(\tilde{m}_1^2 + \tilde{m}_2^2)$

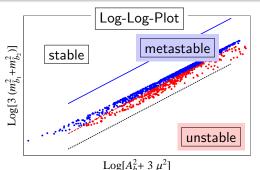
 [Kusenko, Langacker, Segre '96]: Vacuum must not be stable, as long as it is metastable:

Metastability $A^2 + 3|\mu|^2 \lesssim 2.5 \times 3(\tilde{m}_1^2 + \tilde{m}_2^2)$

Vacuum stability: Check our points

• Check if our parameters describe stable minima:

$$A_q^2 + 3\mu^2 \lesssim 2.5 \times 3(m_{\tilde{q}_1} + m_{\tilde{q}_2})$$

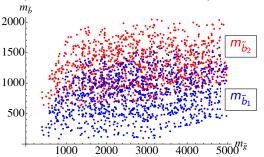


- 8t v - 7

⇒ No stable vacua, but a lof ot metastable vacua.

Mass spectrum II: $m_{\tilde{b}}$ vs. M_3

Look at sbottom spectrum for these metastable parameters



- ⇒ No big change from before:
- There are possible parameter points with: \sim few TeV gluino mass and \sim few 100 GeV 1.5 TeV lighter sbottom mass.

Conclusion

- MSSM can give *positive* correction to $B \to \tau \nu$ amplitude, if
 - μ is negative and large (\sim few Tev)
 - ullet tan eta is large
- Also need:
 - $A_t > 0$ for $b \to s\gamma$.
 - $M_{1,2} < 0$ for $g_{\mu} 2$.
- After constraints:
 - Get heavy gluino (\sim few TeV) and lighter sbottoms/stops (\sim TeV)
- Vacuum stability is a concern, but there are metastable parameter points.

MSSM with with large, negative μ & large tan β $(1 + \epsilon_0 \tan \beta < 0)$

Viable and interesting corner of parameter space.

Carlos' conclusion

"We are all going to die ..."

Carlos' conclusion

"We are all going to die \dots

... but not anytime soon!"

Thanks for your attention